Abstract

P2X receptors mediate sympathetic control and autoregulation of the renal circulation triggering contraction of renal vascular smooth muscle cells (RVSMCs) via an elevation of intracellular Ca(2+) concentration ([Ca(2+) ](i) ). Although it is well-appreciated that the myocyte Ca(2+) signalling system is composed of microdomains, little is known about the structure of the [Ca(2+) ](i) responses induced by P2X receptor stimulation in vascular myocytes. Using confocal microscopy, perforated-patch electrical recordings, immuno-/organelle-specific staining, flash photolysis and RT-PCR analysis we explored, at the subcellular level, the Ca(2+) signalling system engaged in RVSMCs on stimulation of P2X receptors with the selective agonist αβ-methylene ATP (αβ-meATP). RT-PCR analysis of single RVSMCs showed the presence of genes encoding inositol 1,4,5-trisphosphate receptor type 1(IP(3) R1) and ryanodine receptor type 2 (RyR2). The amplitude of the [Ca(2+) ](i) transients depended on αβ-meATP concentration. Depolarization induced by 10 µmol·L(-1) αβ-meATP triggered an abrupt Ca(2+) release from sub-plasmalemmal ('junctional') sarcoplasmic reticulum enriched with IP(3) Rs but poor in RyRs. Depletion of calcium stores, block of voltage-gated Ca(2+) channels (VGCCs) or IP(3) Rs suppressed the sub-plasmalemmal [Ca(2+) ](i) upstroke significantly more than block of RyRs. The effect of calcium store depletion or IP(3) R inhibition on the sub-plasmalemmal [Ca(2+) ](i) upstroke was attenuated following block of VGCCs. Depolarization of RVSMCs following P2X receptor activation induces IP(3) R-mediated Ca(2+) release from sub-plasmalemmal ('junctional') sarcoplasmic reticulum, which is activated mainly by Ca(2+) influx through VGCCs. This mechanism provides convergence of signalling pathways engaged in electromechanical and pharmacomechanical coupling in renal vascular myocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call