Abstract
Mutations in amyloid precursor protein (APP), and presenilin-1 and presenilin-2 (PS1 and PS2) have causally been implicated in Familial Alzheimer's Disease (FAD), but the mechanistic link between the mutations and the early onset of neurodegeneration is still debated. Although no consensus has yet been reached, most data suggest that both FAD-linked PS mutants and endogenous PSs are involved in cellular Ca2+ homeostasis. We here investigated subcellular Ca2+ handling in primary neuronal cultures and acute brain slices from wild type and transgenic mice carrying the FAD-linked PS2-N141I mutation, either alone or in the presence of the APP Swedish mutation. Compared with wild type, both types of transgenic neurons show a similar reduction in endoplasmic reticulum (ER) Ca2+ content and decreased response to metabotropic agonists, albeit increased Ca2+ release induced by caffeine. In both transgenic neurons, we also observed a higher ER-mitochondria juxtaposition that favors increased mitochondrial Ca2+ uptake upon ER Ca2+ release. A model is described that integrates into a unifying hypothesis the contradictory effects on Ca2+ homeostasis of different PS mutations and points to the relevance of these findings in neurodegeneration and aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.