Abstract

Spatiotemporal change of the cytosolic free Ca2+ concentration ([Ca2+]i) in response to a variety of secretagogues was examined in rat pancreatoma AR-42J and AR-IP cells by microspectroflurometry and digital imaging microscopy after loading with fura-2. In the presence of external Ca2+, carbachol, CCK-OP (cholecystokinin-octapeptide), gastrin, norepinephrine or high K+ evoked a large transient increase in [Ca2+]i in AR-42J cells which declined to a sustained level before slowly declining towards the resting level. In the absence of external Ca2+, a transient increase in [Ca2+]i were evoked by all the ligands except for high K+ stimulation, which declined rapidly towards the resting level. The [Ca2+]i increase caused by carbachol and high K+ treatment was inhibited by muscarinic receptor antagonist, atropine, and by L-type Ca2+ channel blocker, nifedipine, respectively. The transient [Ca2+]i increase induced by gastrin stimulation was not blocked by Ca2+ channel blocker, lanthanum. In the AR-IP cells, which are non-differentiated pancreatoma cell line, all stimulations including high K+ treatment have failed to evoke [Ca2+]i response. These intracellular Ca2+ mobilizations in response to ligands in AR-42J cells were displayed by digital imaging microscopy. From these results we conclude that AR-42J cells has an alpha-adrenergic receptor, in addition to muscarinic acetylcholine receptor, CCK-OP receptor, gastrin receptor and voltage dependent Ca2+ channel. In marked contrast, AR-IP cells have neither any hormone receptor for the above ligands nor voltage dependent Ca2+ channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call