Abstract
Robust coordination of surface and volume changes is critical for cell integrity. Few studies have elucidated the plasma membrane (PM) remodeling events during cell surface and volume alteration, especially regarding PM sensing and its subsequent rearrangements. Here, using fission yeast protoplasts, we reveal a Ca2+-dependent mechanism for membrane addition that ensures PM integrity and allows its expansion during acute hypoosmotic cell swelling. We show that MscS-like mechanosensitive channels activated by PM tension control extracellular Ca2+ influx, which triggers direct lipid transfer at endoplasmic reticulum (ER)-PM contact sites by conserved extended-synaptotagmins and accelerates exocytosis, enabling PM expansion necessary for osmotic equilibrium. Defects in any of these key events result in rapid protoplast rupture upon severe hypotonic shock. Our numerical simulations of hypoosmotic expansion further propose a cellular strategy that combines instantaneous non-vesicular lipid transfer with bulk exocytic membrane delivery to maintain PM integrity for dramatic cell surface/volume adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.