Abstract

We compared isotonic shortening with isometric force generation as a function of external Ca2+ in 166 tracheal smooth muscle (TSM) strips from 27 mongrel dogs in vitro. Concentration-response curves were generated with muscarinic stimulation (acetylcholine, ACh), alpha-adrenergic receptor activation (norepinephrine after beta-adrenoceptor blockade, NE), serotonin (5-HT), and KCl-substituted Krebs-Henseleit solution. The concentrations of 5-HT causing half-maximal shortening (ECS50, 1.54 +/- 0.14 X 10(-7) M) and half-maximal active isometric tension (ECT50, 1.72 +/- 0.30 X 10(-7) M) were similar (P = NS). Likewise, ECS50 (21.9 +/- 0.7 mM) and ECT50, (22.0 +/- 0.9 mM) were similar for KCl. In contrast, facilitated isotonic shortening (i.e., greater isotonic shortening for comparable degrees of force generation) was elicited with ACh and NE for all levels of force generation between 15 and 85% of maximum and for all concentrations of ACh from 3 X 10(-8) to 3 X 10(-5) M (P less than 0.05 for all points). Facilitated isotonic shortening also was elicited for all concentrations of NE from 10(-8) to 10(-6) M (P less than 0.05 for all points). Removal of Ca2+ from the perfusate substantially reduced the potency of ACh (P less than 0.001) and abolished differences between ECS50 (2.23 +/- 0.28 X 10(-5) M) and ECT50 (2.50 +/- 0.46 X 10(-5) M, P = NS). We demonstrate that for comparable degrees of force generation, muscarinic and alpha-adrenergic receptor activation cause greater isotonic shortening than KCl or 5-HT and that this facilitated shortening is associated with the concentration of external Ca2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.