Abstract

Extracellular ATP is a potent surfactant secretagogue but its origin in the alveolus, its mechanism(s) of release and its regulatory pathways remain unknown. Previously, we showed that hypotonic swelling of alveolar A549 cells induces Ca(2+)-dependent secretion of several adenosine and uridine nucleotides, implicating regulated exocytosis. In this study, we examined sources of Ca(2+) for the elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) evoked by acute 50% hypotonic stress and the role of autocrine purinergic signalling in Ca(2+)-dependent ATP release. We found that ATP release does not directly involve Ca(2+) influx from extracellular spaces, but depends entirely on Ca(2+) mobilization from intracellular stores. The [Ca(2+)](i) response consisted of slowly rising elevation, representing mobilization from thapsigargin (TG)-insensitive stores and a superimposed rapid spike due to Ca(2+) release from TG-sensitive endoplasmic reticulum (ER) Ca(2+) stores. The latter could be abolished by hydrolysis of extracellular triphospho- and diphosphonucleotides with apyrase; blocking P2Y(2)/P2Y(6) receptors of A549 cells with suramin; blocking UDP receptors (P2Y(6)) with pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid (PPADS); emptying TG-sensitive stores downstream with TG or caffeine in Ca(2+)-free extracellular solution; or blocking the Ca(2+)-release inositol 1,4,5-triphosphate receptor channel of the ER with 2-aminoethyldiphenylborinate. These data demonstrate that the rapid [Ca(2+)](i) spike results from the autocrine stimulation of IP(3)/Ca(2+)-coupled P2Y, predominantly P2Y(6), receptors, accounting for approximately 70% of total Ca(2+)-dependent ATP release evoked by hypotonic shock. Our study reveals a novel paradigm in which stress-induced ATP release from alveolar cells is amplified by the synergistic autocrine/paracrine action of coreleased uridine and adenosine nucleotides. We suggest that a similar mechanism of purinergic signal propagation operates in other cell types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.