Abstract

The Ca(2+) dependence of synaptic quantal release is generally thought to be restricted to probability of vesicular release. However, some studies have suggested that the number of release sites (n) at the neuromuscular junction (NMJ) is also Ca(2+) dependent. In this study, we recorded endplate currents over a wide range of extracellular Ca(2+) concentrations and found the expected Ca(2+) dependency of release. A graphical technique was used to estimate p (probability of release) and n using standard binomial assumptions. The results suggested n was Ca(2+) dependent. The data were simulated using compound binomial statistics with variable n (Ca(2+) dependent) or fixed n (Ca(2+) independent). With fixed n, successful simulation of increasing Ca(2+) required that p increase abruptly at some sites from very low to high values. Successful simulation with variable n required the introduction of previously silent release sites (p = 0) with high values of p. Thus the success of both simulations required abrupt, large increases of p at a subset of release sites with initially low or zero p. Estimates of the time course of release obtained by deconvolving evoked endplate currents with average miniature endplate currents decreased slightly as Ca(2+) increased, thus arguing against sequential release of multiple quanta at higher Ca(2+) levels. Our results suggest that the apparent Ca(2+) dependence of n at the NMJ can be explained by an underlying Ca(2+) dependence of a spatially variable p such that p increases abruptly at a subset of sites as Ca(2+) is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.