Abstract

In motion-sensitive visual neurons of the fly, excitatory visual stimulation elicits Ca(2+) accumulation in dendrites and presynaptic arborizations. Following the cessation of motion stimuli, decay time courses of the cytosolic Ca(2+) concentration signals measured with fluorescent dyes were faster in fine arborizations compared with the main branches. When indicators with low Ca(2+) affinity were used, the decay of the Ca(2+) signals appeared slightly faster than with high affinity dyes, but the dependence of decay kinetics on branch size was preserved. The most parsimonious explanation for faster Ca(2+) concentration decline in thin branches compared with thick ones is that the velocity of Ca(2+) clearance is limited by transport mechanisms located in the outer membrane and is thus dependent on the neurite's surface-to-volume ratio. This interpretation was corroborated by UV flash photolysis of caged Ca(2+) to systematically elicit spatially homogeneous step-like Ca(2+) concentration increases of varying amplitude. Clearance of Ca(2+) liberated by this method depended on branch size in the same way as Ca(2+) accumulated during visual stimulation. Furthermore, the decay time courses of Ca(2+) signals were only little affected by the amount of Ca(2+) released by photolysis. Thus Ca(2+) efflux via the outer membrane is likely to be the main reason for the spatial differences in Ca(2+) clearance in visual motion-sensitive neurons of the fly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call