Abstract

AimsVolume overload (VO) induced hypertrophy is one of the hallmarks to the development of heart diseases. Understanding the compensatory mechanisms involved in this process might help preventing the disease progression.Methods and resultsTherefore, the present study used 2 months old Wistar rats, which underwent an aortocaval fistula to develop VO‐induced hypertrophy. The animals were subdivided into four different groups, two sham operated animals served as age‐matched controls and two groups with aortocaval fistula. Echocardiography was performed prior termination after 4‐ and 8‐month. Functional and molecular changes of several sarcomeric proteins and their signalling pathways involved in the regulation and modulation of cardiomyocyte function were investigated.ResultsThe model was characterized with preserved ejection fraction in all groups and with elevated heart/body weight ratio, left/right ventricular and atrial weight at 4‐ and 8‐month, which indicates VO‐induced hypertrophy. In addition, 8‐months groups showed increased left ventricular internal diameter during diastole, RV internal diameter, stroke volume and velocity‐time index compared with their age‐matched controls. These changes were accompanied by increased Ca2+ sensitivity and titin‐based cardiomyocyte stiffness in 8‐month VO rats compared with other groups. The altered cardiomyocyte mechanics was associated with phosphorylation deficit of sarcomeric proteins cardiac troponin I, myosin binding protein C and titin, also accompanied with impaired signalling pathways involved in phosphorylation of these sarcomeric proteins in 8‐month VO rats compared with age‐matched control group. Impaired protein phosphorylation status and dysregulated signalling pathways were associated with significant alterations in the oxidative status of both kinases CaMKII and PKG explaining by this the elevated Ca2+ sensitivity and titin‐based cardiomyocyte stiffness and perhaps the development of hypertrophy.ConclusionsOur findings showed VO‐induced cardiomyocyte dysfunction via deranged phosphorylation of myofilament proteins and signalling pathways due to increased oxidative state of CaMKII and PKG and this might contribute to the development of hypertrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.