Abstract

ABSTRACT Macroautophagy/autophagy is essential for maintaining glucose homeostasis, but the mechanisms by which cells sense glucose starvation and initiate autophagy are not yet fully understood. Recently, we reported that the assembly of a Ca2+-triggered Snf1-Bmh1/Bmh2-Atg11 complex initiates autophagy in response to glucose starvation. Our research reveals that during glucose starvation, the efflux of vacuolar Ca2+ increases cytoplasmic Ca2+ levels, which activates the protein kinase Rck2. Rck2-mediated phosphorylation of Atg11 enhances its interaction with Bmh1 and Bmh2. This interaction recruits the Snf1-Sip1-Snf4 complex, which is located on the vacuolar membrane, to the phagophore assembly site (PAS), leading to the activation of Atg1 and the initiation of autophagy. In summary, we have identified a previously unrecognized signaling pathway involved in glucose starvation-induced autophagy, where Ca2+ acts as a fundamental signaling molecule that links energy stress to the formation of the autophagy initiation complex.Abbreviation: AMPK: AMP-activated protein kinase; ATG: autophagy related; co-IP: co-immunoprecipitation; MAPK: mitogen-activated protein kinase; PAS: phagophore assembly site; ULK1: unc-51 like autophagy activating kinase 1

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.