Abstract

Using the whole-cell voltage clamp technique, the electrical changes in oocyte and embryo plasma membrane were followed during different meiotic and developmental stages in Ciona intestinalis. We show, for the first time, an electrophysiological characterization of the plasma membrane in oocytes at the germinal vesicle (GV) stage with high L-type calcium (Ca2+) current activity that decreased through meiosis. Moreover, the absence of Ca2+ reduced germinal vesicle breakdown (GVBD), which is consistent with a role of Ca2+ currents in the prophase/metaphase transition. In mature oocytes at the metaphase I (MI) stage, Ca2+ currents decreased and then disappeared and sodium (Na+) currents first appeared remaining high up to the zygote stage. Intracellular Ca2+ release was higher in MI than in GV, indicating that Ca2+ currents in GV may contribute to fill the stores which are essential for oocyte contraction at fertilization. The fertilization current generated in Na+ free sea water was significantly lower than the control; furthermore, oocytes fertilized in the absence of Na+ showed high development of anomalous "rosette" embryos. Current amplitudes became negligible in embryos at the 2- and 4-cell stage, suggesting that signaling pathways that mediate first cleavage do not rely on ion current activities. At the 8-cell stage embryo, a resumption of Na+ current activity and conductance occurred, without a correlation with specific blastomeres. Taken together, these results imply: (i) an involvement of L-type Ca2+ currents in meiotic progression from the GV to MI stage; (ii) a role of Na+ currents during electrical events at fertilization and subsequent development; (iii) a major role of plasma membrane permeability and a minor function of specific currents during initial cell line segregation events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.