Abstract

Phospholipase C (EC 3.1.4.3.) from Clostridium perfringens (crude extracts) was used to study the role of phospholipids in the osmotic permeability of the urinary bladder of the toad. When added to the serosal bath (430 mU/ml) it inhibited the effects of antidiurectic hormone (ADH) and exogenous cyclic AMP. Under the same conditions the increase in osmotic flow produced by serosal hypertonicity (SH) was slightly enhanced by the lipase. The hydroosmotic effect of SH was greatly potentiated by the lipase by decreasing 10-fold the Ca2+ concentration. The SH-induced flow was inhibited by the lipase if the Ca2+ or the H+ concentration was increased 10-fold, but not if the increase in positive charges was produced by a concentration of Mg2+. Phospholipase C had no effect on the action of either ADH or SH if added to the mucosal bath. Serosal neuraminidase or phospholipase A2 could not mimic the effect of phospholipase C on SH. The effect of phospholipase C on the response to SH was not modified if fatty acid-free bovine serum albumin was added to the bath. Therefore, the release of products of lipolysis into the bath do not seem to be responsible for the effects of phospholipase C on SH-induced water flow. The results suggest that the effects of the enzyme on the composition and rearrangement of lipids at the basolateral membrane produce modifications of the water flow. Ca2+ and H+ may modify the enzyme-substrate interaction, suggesting that different phospholipids may be differentially involved in the control of water permeability of the basolateral membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call