Abstract

Ca(2+) regulation of the Ca(2+) binding mitochondrial carriers for aspartate/glutamate (AGCs) is provided by their N-terminal extensions, which face the intermembrane space. The two mammalian AGCs, aralar and citrin, are members of the malate-aspartate NADH shuttle. We report that their N-terminal extensions contain up to four pairs of EF-hand motifs plus a single vestigial EF-hand, and have no known homolog. Aralar and citrin contain one fully canonical EF-hand pair and aralar two additional half-pairs, in which a single EF-hand is predicted to bind Ca(2+). Shuttle activity in brain or skeletal muscle mitochondria, which contain aralar as the major AGC, is activated by Ca(2+) with S(0.5) values of 280-350 nm; higher than those obtained in liver mitochondria (100-150 nm) that contain citrin as the major AGC. We have used aralar- and citrin-deficient mice to study the role of the two isoforms in heart, which expresses both AGCs. The S(0.5) for Ca(2+) activation of the shuttle in heart mitochondria is about 300 nm, and it remains essentially unchanged in citrin-deficient mice, although it undergoes a drastic reduction to about 100 nm in aralar-deficient mice. Therefore, aralar and citrin, when expressed as single isoforms in heart, confer differences in Ca(2+) activation of shuttle activity, probably associated with their structural differences. In addition, the results reveal that the two AGCs fully account for shuttle activity in mouse heart mitochondria and that no other glutamate transporter can replace the AGCs in this pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.