Abstract

In this study we examined the effects of 3-24 h of incubation of chemically skinned rat fast-twitch muscle with the glycolytic metabolite glucose 6-phosphate (G6-P) on the contractile properties and myosin ATPase activity in single muscle fibres, and on the carbohydrate content of myosin heavy chains (MHCs). Exposure of the permeabilised muscle to 10 mM G6-P for 24 h at 22+/-1 degrees C in a rigor solution containing protease inhibitors and a reducing agent (dithiothreitol, DTT) significantly decreased maximum Ca(2+)-activated force output by 31%, lowered the Ca2+ threshold for contraction by 0.1 pCa units and produced shallower force-pCa curves compared with controls. Furthermore, under these conditions, G6-P-treated muscle displayed lower myofibrillar MgATPase activity and a markedly higher carbohydrate content of MHCs, as identified with an immunoblot protocol for glycoprotein detection. Shorter incubations under the same conditions or 24-h incubations with 5 mM G6-P generally resulted in smaller changes in the contractile activation parameters. These findings suggest that reducing sugars acting as metabolic intermediates in the glycolytic pathway can have important non-energy-related effects on the contractile activation characteristics of mammalian skeletal muscle. These effects are consistent with the glycation of muscle proteins, in particular that of the MHC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.