Abstract
Mitochondrial respiration rates and their regulation by ADP, AMP and creatine, were studied at different free Ca(2+) concentrations (0.1 versus 0.4 microm) on permeabilized fibre bundles of rabbit skeletal muscles differing in their myosin heavy chain profiles. Four fibre bundle types were obtained: pure types I and IIx, and mixed types IIax (approximately 50% IIa and 50% IIx fibres) and IIb+ (60% IIb fibres, plus IIx and IIa). At rest, pure type I fibres displayed a much higher apparent K(m) for ADP (212 microm) than IIx fibres (8 microm). Within the IIax and IIb+ mixed fibre bundle types, two K(ADP)(m) values were observed (70 microm and 5 microm). Comparison between pure IIx and mixed types indicates that the intermediate K(m) of 70 microm most probably corresponds to the mitochondrial affinity for ADP in IIa fibres, the lowest K(m) for ADP (5 microm) corresponding to IIx and IIb types. Activation of mitochondrial creatine and adenylate kinase reactions stimulated mitochondrial respiration only in type I and IIax fibre bundles, indicating an efficient coupling between both kinases and ADP rephosphorylation in type I and, likely, IIa fibres, since no effect was observed in pure IIx fibres. Following Ca(2+)-induced activation of myosin-ATPase, an increase in mitochondrial sensitivity to ADP of 45% and 250% was observed in type IIax and I bundles, respectively, an effect mostly prevented by addition of vanadate, an inhibitor of myosin-ATPase. Ca(2+)-induced activation of myosin-ATPase also prevented the stimulation of respiration rates by creatine and AMP in I and IIax bundles. In addition to differential regulation of mitochondrial respiration and energy transfer systems at rest in I and IIa versus IIx and IIb muscle fibres, our results indicate a regulation of phosphotransfer systems by Ca(2+) via the stimulation of myosin-ATPases in type I and IIa fibres of rabbit muscles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.