Abstract

GnRH receptor activation elicits release of intracellular Ca(2+), which leads to secretion and also activates Ca(2+)-activated ion channels underlying membrane voltage changes. The predominant Ca(2+)-activated ion channels in rat and mouse gonadotrophs are Ca(2+)-activated K(+) channels. To establish the temporal relationship between GnRH-induced changes in intracellular [Ca(2+)] ([Ca(2+)](i)) and membrane current (I(m)), and to identify specific Ca(2+)-activated K(+) channels linking GnRH-induced increase in [Ca(2+)](i) to changes in plasma membrane electrical activity, we used single female mouse gonadotrophs in the perforated patch configuration of the patch-clamp technique, which preserves signaling pathways. Simultaneous measurement of [Ca(2+)](i) and I(m) in voltage-clamped gonadotrophs revealed that GnRH stimulates an increase in [Ca(2+)](i) that precedes outward I(m), and that activates two kinetically distinct currents identified, using specific toxin inhibitors, as small conductance Ca(2+)-activated K(+) (SK) current (I(SK)) and large (big) conductance voltage- and Ca(2+)-activated K(+) (BK) current (I(BK)). We show that the apamin-sensitive current has an IC(50) of 69 pM, consistent with the SK2 channel subtype and confirmed by immunocytochemistry. The magnitude of the SK current response to GnRH was attenuated by 17beta-estradiol (E(2)) pretreatment. Iberiotoxin, an inhibitor of BK channels, completely blocked the residual apamin-insensitive outward I(m), substantiating that I(BK) is a component of the GnRH-induced outward I(m). In contrast to its suppression of I(SK), E(2) pretreatment augmented peak I(BK). SK or BK channel inhibition modulated GnRH-stimulated LH secretion, implicating a role for these channels in gonadotroph function. In summary, in mouse gonadotrophs the GnRH-stimulated increase in [Ca(2+)](i) activates I(SK) and I(BK), which are differentially regulated by E(2) and which may be targets for E(2) positive feedback in LH secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.