Abstract
Reverse mathematics uses subsystems of second order arithmetic to determine which set existence axioms are required to prove particular theorems. Surprisingly, almost every theorem studied is either provable in RCA0 or equivalent over RCA0 to one of four other subsystems: WKL0, ACA0, ATR0 or – CA0. Of these subsystems, – CA0 has the fewest known equivalences. This article presents a new equivalence of – C0 which comes from ordered group theory.One of the fundamental problems about ordered groups is to classify all possible orders for various classes of orderable groups. In general, this problem is extremely difficult to solve. Mal'tsev [1949] solved a related problem by showing that the order type of a countable ordered group is ℤαℚε where ℤ is the order type of the integers, ℚ is the order type of the rationals, α is a countable ordinal, and ε is either 0 or 1. The goal of this article is to prove that this theorem is equivalent over RCA0 to – CA0.In Section 2, we give the basic definitions and notation for RCA0, ACA0 and CA0 as well as for ordered groups. For more information on reverse mathematics, see Friedman, Simpson, and Smith [1983] or Simpson [1999] and for ordered groups, see Kokorin and Kopytov [1974] or Fuchs [1963]. Our notation will follow these sources. In Section 3, we show that – CA0 suffices to prove Mal'tsev's Theorem and the reversal is done over RCA0 in Section 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.