Abstract

The transverse (t-) tubule network is an important site for Ca influx and release during excitation-contraction coupling in cardiac ventricular myocytes; however, its role in Ca extrusion is less clear. The present study was designed to investigate the relative contributions of Ca extrusion pathways across the t-tubule and surface membranes. Ventricular myocytes were isolated from the hearts of adult male Wistar rats and detubulated using formamide. Intracellular Ca was monitored using fluo-3 and confocal microscopy. Caffeine (20mmol/L) was used to induce SR Ca release; carboxyeosin (20μmol/L) and nickel (10mmol/L) were used to inhibit the sarcolemmal Ca ATPase and Na/Ca exchanger (NCX) respectively. Carboxyeosin decreased the rate constant of decay of the caffeine-induced Ca transient in control cells, but had no effect in detubulated cells, suggesting that Ca extrusion via the Ca ATPase occurs only across the t-tubule membrane. However nickel decreased the rate constant of the caffeine-induced Ca transient in control and detubulated cells, although its effect was greater in control cells, suggesting that Ca extrusion via NCX occurs across the surface and t-tubule membranes. The PKA inhibitor H-89 (10μmol/L) was used to investigate the role of basal PKA activity in Ca extrusion; H-89 appeared to have no effect on Ca extrusion via the Ca ATPase, but reduced Ca extrusion via NCX at the t-tubules but not the surface membrane. Thus it appears that Ca extrusion via the sarcolemmal Ca ATPase occurs only at the t-tubules, and is not regulated by basal PKA activity, while Ca extrusion via NCX occurs across both the surface and t-tubule membranes, but predominantly across the t-tubule membrane due, in part, to localised stimulation of NCX by PKA at the t-tubules. This may be important in heart disease, in which changes in t-tubule structure and protein phosphorylation occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.