Abstract

This letter presents a novel and exact formulation for the probability of detection of a cell-averaging, constant false-alarm rate (CFAR) radar system operating in a homogeneous Weibull clutter environment. We consider a realistic scenario with both target returns and clutter residues within the cell under test by the radar processing. In passing, we derive novel closed-form expressions for the probability density function and the cumulative distribution function of the sum of an exponentially fluctuating target embedded in Weibull clutter. The derived exact expressions are given in terms of both: 1) bivariate Fox H-function, for which we provide a portable and efficient MATHEMATICA code and 2) easily computable series representations. The validity of all expressions is confirmed via Monte Carlo simulation. The derived results are compared with the idealized Neyman–Pearson detector so as to quantify the CFAR losses, and they indicate that even a small change in the shape parameter of the clutter distribution can significantly affect the radar detection performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.