Abstract

Many extracellular factors sensitize nociceptors. Often they act simultaneously and/or sequentially on nociceptive neurons. We investigated if stimulation of the protein kinase C epsilon (PKCε) signaling pathway influences the signaling of a subsequent sensitizing stimulus. Central in activation of PKCs is their transient translocation to cellular membranes. We found in cultured nociceptive neurons that only a first stimulation of the PKCε signaling pathway resulted in PKCε translocation. We identified a novel inhibitory cascade to branch off upstream of PKCε, but downstream of Epac via IP3-induced calcium release. This signaling branch actively inhibited subsequent translocation and even attenuated ongoing translocation. A second 'sensitizing' stimulus was rerouted from the sensitizing to the inhibitory branch of the signaling cascade. Central for the rerouting was cytoplasmic calcium increase and CaMKII activation. Accordingly, in behavioral experiments, activation of calcium stores switched sensitizing substances into desensitizing substances in a CaMKII-dependent manner. This mechanism was also observed by in vivo C-fiber electrophysiology corroborating the peripheral location of the switch. Thus, we conclude that the net effect of signaling in nociceptors is defined by the context of the individual cell's signaling history.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.