Abstract

The hydrogen storage capacity and performance of Ca and K decorated germanene were studied using density functional theory calculation. The Ca and K adatoms were found to be sufficiently bonded to the germanene without clustering at the hollow site. Further investigation has shown an ionic bonding is apparent based on the charge density difference and Bader charge analysis. Upon adsorption of H2 on the decorated germanene, it was found that the Ca and K decorated systems could adsorb 8 and 9 H2 molecules, respectively. The adsorption energies of H2 molecules were within the Van der Waals energy (400–435 meV), suggesting weak physisorption. The charge density profile revealed that the electron of H2 moved toward the adatom decoration without leaving the local region of H2. This suggests that a dipole-dipole interaction was apparent and consistent with the energy range found. Finally, the gravimetric density obtained from the adsorption of H2 on the decorated germanene shows that this material is a potential for H2 storage media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.