Abstract

Enhancements in the light response and hydrogen peroxide utilization are critical to the catalytic performance of heterogeneous Fenton-like perovskites. Here, in this research, oxygen vacancy-enriched La0.9Ca0.1Cu0.5Fe0.5O3-δ was prepared by a co-precipitation method with Cu substitution and Ca doping and demonstrated excellent performance for the degradation of bisphenol A. Both total organic carbon (TOC) removal and hydrogen peroxide utilization were close to 90% within 120 min at pH 3–7, where the TOC removal and hydrogen peroxide utilization were 2.5 times and 5.5 times of LaFeO3 in the absence of Ca and Cu doping. It demonstrated excellent stability to light irradiation and oxidation with respect to cycling and metal ion leaching. This revealed that oxygen vacancies were enriched in the catalyst with the substitution of Ca and Cu and contributed to the recombination of photogenerated electrons, thereby increasing the reduction efficiency of copper ions and accelerating the redox cycling of iron ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call