Abstract

BackgroundCa2+ influx through CaV1.1 is not required for skeletal muscle excitation-contraction coupling, but whether Ca2+ permeation through CaV1.1 during sustained muscle activity plays a functional role in mammalian skeletal muscle has not been assessed.MethodsWe generated a mouse with a Ca2+ binding and/or permeation defect in the voltage-dependent Ca2+ channel, CaV1.1, and used Ca2+ imaging, western blotting, immunohistochemistry, proximity ligation assays, SUnSET analysis of protein synthesis, and Ca2+ imaging techniques to define pathways modulated by Ca2+ binding and/or permeation of CaV1.1. We also assessed fiber type distributions, cross-sectional area, and force frequency and fatigue in isolated muscles.ResultsUsing mice with a pore mutation in CaV1.1 required for Ca2+ binding and/or permeation (E1014K, EK), we demonstrate that CaV1.1 opening is coupled to CaMKII activation and refilling of sarcoplasmic reticulum Ca2+ stores during sustained activity. Decreases in these Ca2+-dependent enzyme activities alter downstream signaling pathways (Ras/Erk/mTORC1) that lead to decreased muscle protein synthesis. The physiological consequences of the permeation and/or Ca2+ binding defect in CaV1.1 are increased fatigue, decreased fiber size, and increased Type IIb fibers.ConclusionsWhile not essential for excitation-contraction coupling, Ca2+ binding and/or permeation via the CaV1.1 pore plays an important modulatory role in muscle performance.Electronic supplementary materialThe online version of this article (doi:10.1186/s13395-014-0027-1) contains supplementary material, which is available to authorized users.

Highlights

  • Ca2+ influx through CaV1.1 is not required for skeletal muscle excitation-contraction coupling, but whether Ca2+ permeation through CaV1.1 during sustained muscle activity plays a functional role in mammalian skeletal muscle has not been assessed

  • To directly delineate the role of Ca2+ permeation through CaV1.1 in skeletal muscle function, we created a mouse with a Ca2+ binding and permeation defect in CaV1.1. We demonstrate that this CaV1.1-mediated pathway utilizes the flexibility of Ca2+ signaling to regulate calmodulin-dependent protein kinase II (CaMKII) and calcineurin activation, thereby enhancing sarcoplasmic reticulum (SR) Ca2+ store refilling and protein synthesis to modulate fatigue susceptibility, muscle size, and fiber type distribution

  • To identify upstream events that regulate protein synthesis, we examined the levels of p-S473-Akt/Akt [40], pT308-Akt/Akt, and pT202/Y204-ERK1/2 and found that all of these phosphorylation events were decreased in both the soleus and extensor digitorum longus (EDL) of EK mice treated with insulin compared to the

Read more

Summary

Introduction

Ca2+ influx through CaV1.1 is not required for skeletal muscle excitation-contraction coupling, but whether Ca2+ permeation through CaV1.1 during sustained muscle activity plays a functional role in mammalian skeletal muscle has not been assessed. Excitation-contraction coupling (ECC) in skeletal muscle involves a mechanical interaction between the L-type voltage-dependent Ca2+ channel (CaV1.1) and the sarcoplasmic reticulum (SR) Ca2+ release channel (the ryanodine receptor, RyR1). Ca2+ entry through CaV1.1 is not required for skeletal muscle ECC [1], CaV1.1 opens after the initial voltage-gated release event to allow Ca2+ to both bind and permeate the channel pore [2]. There is only limited understanding of the role of Ca2+ permeation via CaV1.1, this influx has been suggested to regulate clustering of nicotinic acetylcholine receptors at the neuromuscular junction [7,8,9] and muscle plasticity [10].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.