Abstract

In sea urchin embryos, the first specification of cell fate occurs at the fourth cleavage, when small cells (the micromeres) are formed at the vegetal pole. The fate of other blastomeres is dependent on the receipt of cell signals originating from the micromeres. The micromeres are fated to become skeletogenic cells and show the ability to induce the endoderm (the archenteron) in the neighbouring cells during the 16- to 60-cell stage. Several molecules involved in signaling pathways, i.e. Notch for mesoderm specification, bone morphogenic protein (BMP) for ectoderm specification and beta-catenin for endoderm specification, are spatially and temporally expressed during development. In the micromeres, beta-catenin increases and subsequently localizes to the nuclei under the regulation of TCF, a nuclear binding partner of beta-catenin, until the 60-cell stage. However, the mechanisms activating these signaling substances are still unclear. In this article, I demonstrate some specific properties of the membrane and cytoplasm of micromeres including new findings on intracellular Ca(2+) concentration, and propose a mechanism by which the functional micromeres are autonoumously formed. The possible roles of these in the specification of vegetal cell fate in early development are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.