Abstract

Background— Sarcoplasmic reticulum (SR) Ca 2+ leak through ryanodine receptor type 2 (RyR2) dysfunction is of major pathophysiological relevance in human heart failure (HF); however, mechanisms underlying progressive RyR2 dysregulation from cardiac hypertrophy to HF are still controversial. Methods and Results— We investigated healthy control myocardium (n=5) and myocardium from patients with compensated hypertrophy (n=25) and HF (n=32). In hypertrophy, Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) and protein kinase A (PKA) both phosphorylated RyR2 at levels that were not different from healthy myocardium. Accordingly, inhibitors of these kinases reduced the SR Ca 2+ leak. In HF, however, the SR Ca 2+ leak was nearly doubled compared with hypertrophy, which led to reduced systolic Ca 2+ transients, a depletion of SR Ca 2+ storage and elevated diastolic Ca 2+ levels. This was accompanied by a significantly increased CaMKII-dependent phosphorylation of RyR2. In contrast, PKA-dependent RyR2 phosphorylation was not increased in HF and was independent of previous β-blocker treatment. In HF, CaMKII inhibition but not inhibition of PKA yielded a reduction of the SR Ca 2+ leak. Moreover, PKA inhibition further reduced SR Ca 2+ load and systolic Ca 2+ transients. Conclusions— In human hypertrophy, both CaMKII and PKA functionally regulate RyR2 and may induce SR Ca 2+ leak. In the transition from hypertrophy to HF, the diastolic Ca 2+ leak increases and disturbed Ca 2+ cycling occurs. This is associated with an increase in CaMKII- but not PKA-dependent RyR2 phosphorylation. CaMKII inhibition may thus reflect a promising therapeutic target for the treatment of arrhythmias and contractile dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.