Abstract
Ischaemic heart disease is a major cause of death and disability in the Western world, and a substantial health burden. Cardiomyocyte Ca(2+) overload is known to significantly contribute to contractile dysfunction and myocyte death in ischaemia and reperfusion, and significant advancements have been made in identifying the downstream mediators and cellular origins of this Ca(2+) mismanagement. Ca(2+) /calmodulin-dependent kinase II (CaMKII) is recognized as an important mediator linking pathological changes in subcellular environments to modifications in cardiomyocyte Ca(2+) handling. Activated in response to fluctuations in cellular Ca(2+) and to various post-translational modifications, CaMKII targets numerous Ca(2+) channels/transporters involved in Ca(2+) handling and contractile function regulation. CaMKII is activated early in reperfusion, where it exacerbates Ca(2+) leak from the sarcoplasmic reticulum and promotes the onset of ventricular arrhythmias. Inhibiting CaMKII can increase functional recovery in reperfusion and reduce apoptotic/necrotic death, at least partly through indirect and direct influences on mitochondrial Ca(2+) levels and function. Yet, CaMKII can also have beneficial actions in ischaemia and reperfusion, in part by providing inotropic support for the stunned myocardium and contributing as an intermediate to cardioprotective preconditioning signalling cascades. There is considerable potential in targeting CaMKII as a part of a surgical reperfusion strategy, though further mechanistic understanding of the relationship between CaMKII activation status and the extent of ischaemia/reperfusion injury are required to fully establish an optimal pharmacological approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Clinical and experimental pharmacology & physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.