Abstract
Enzyme digestion of rat pancreatic tissue yielded a preparation of isolated acinar cells, over 90% of which excluded trypan blue. These isolated cells responded to a variety of secretagogues, the responses being sensitive to the removal of extracellular calcium, increasing extracellular magnesium, and by trifluoperazine, an antagonist of Ca-dependent processes. When exposed to intense electric fields, isolated acinar cells became permeable to CaEGTA and MgATP, these markers gaining access to over 60% of the intracellular mileu within minutes. The accessability to these markers seemed independent of the ionised Ca 2+ level. Less than 0.5% of the cellular amylase was released when cells were rendered leaky in a medium containing about 10 −9 M Ca 2+, but typically 4% was released when the Ca 2+ level was subsequently raised to 10 −5M levels, the EC 50 for Ca 2+ being 2 μM. This amount of amylase released was comparable to the amounts secreted from intact cells in response to a variety of agonists. The cytosolic marker lactate dehydrogenase was also released from leaky cells, but the extent was independent of Ca 2+ concentration. No amylase was released at 10 −7M Ca 2+ when permeable cells were exposed to cyclic 3′,5′-AMP or cyclic 3′,5′-GMP. The calcium activation curve for amylase release seemed to be independent of cyclic nucleotides, but was markedly increased in both the extent of release and apparent affinity for Ca 2+ in the presence of the phorbol ester 12-O-tetradecanoyl phorbol 13 acetate. These results suggest that when “functionally normal” isolated acinar cells are rendered permeable, Ca 2+ — but not cyclic nucleotides — acts as a second messenger for amylase secretion, and furthermore that protein kinase C may be involved in the secretory process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.