Abstract

The aim of the present study was to evaluate the role of K + channels in the vasorelaxant effect of the phosphodiesterase 5 inhibitor, sildenafil, in isolated horse penile resistance arteries mounted in microvascular myographs. In phenylephrine-precontracted arteries, sildenafil elicited potent relaxations which were markedly reduced by raising extracellular K +, by the non-selective blocker of Ca 2+-activated K + channels (K Ca), tetraethylammonium and by the blocker of large- and intermediate-conductance K Ca channels, charybdotoxin. Sildenafil relaxant responses were also reduced by the selective inhibitor of large conductance K Ca (BK Ca) channels iberiotoxin, but not by the blocker of small conductance K Ca channels apamin. The inhibitor of the cGMP-dependent protein kinase (PKG), Rp-8-Br-PET-cGMPS, reduced the relaxations elicited by sildenafil but combined treatment with iberiotoxin and Rp-8-Br-PET-cGMPS did not further inhibit these relaxations, compared to the effect of either blocker alone. Iberiotoxin also shifted to the right the relaxations elicited by both the NO donor, S-nitrosoacetyl- d, l-penicillamine (SNAP) and the adenylate cyclase activator forskolin; treatment with both iberiotoxin and Rp-8-Br-PET-cGMPS did cause an additional inhibition. The present results demonstrate that the relaxant effect of sildenafil and NO in penile resistance arteries is due in part to activation of BK Ca channels through a PKG-dependent mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.