Abstract
Mutation in chromosome 9 open reading frame 72 (C9orf72) is a major genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), referred to as C9FTD/ALS. The function of the protein is currently unknown, and the pathomechanism of C9FTD/ALS remains to be elucidated. The study by Satoh and colleagues in the previous issue of Alzheimer's Research & Therapy presents important new findings on C9orf72 protein expression in neurodegenerative disorders along with characterization of C9orf72 antibodies.
Highlights
Mutation in chromosome 9 open reading frame 72 (C9orf72) is a major genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), referred to as C9FTD/ALS
Studies have consistently shown that C9orf[72] is negative in intracellular inclusions including tau-positive structures except for Pick bodies. In contrast to these previous studies, Satoh and colleagues report C9orf[72] in a subset of dystrophic neurites in Alzheimer’s disease (AD). Another major finding is the demonstration of C9orf[72] and ubiquilin-1 positivity in a cluster of dystrophic neurites in senile plaques in AD brains by using antibodies discriminating ubiquilin-1 from ubiquilin-2; these results warrant further studies into the role of ubiquilin in neurodegeneration
The thorough analysis of two different anti-C9orf[72] antibodies for the pattern of immunoreactivity, specificity, cross-reactivities is an important aspect of the study
Summary
Mutation in chromosome 9 open reading frame 72 (C9orf72) is a major genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), referred to as C9FTD/ALS. In the previous issue of Alzheimer’s Research & Therapy, Satoh and colleagues [13] present an analysis of C9orf[72] expression and its relation to ubiquitin, p62, and ubiquilin-1, ubiquilin-2 immunoreactivity in control, Alzheimer’s disease (AD), sporadic ALS, Parkinson’s disease, and multiple system atrophy brains. Studies have consistently shown that C9orf[72] is negative in intracellular inclusions including tau-positive structures except for Pick bodies (for references, see [13]).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.