Abstract
Fatty acid synthesis (FAS) or oxidation (FAO) are important regulatory pathways in immune response. In fact, FAS plays a pivotal role in antigen presentation and T cells activation and FAO leads to fatty acid degradation which has been previously shown to regulate hematopoietic stem cell maintenance. Here we hypothesized that FAS can be a new target to suppress T cell alloimmune responses in solid organ or stem cell transplantations. Therefore, we tested if the FAS inhibitor C75 could suppress T cell alloreactivity without impairing normal hematopoiesis.The immuno-suppressive (IS) effect of moderate FAS inhibition was demonstrated in mixed leukocyte cultures (MLC) where C75 at 10 mkg/ml significantly reduced T cell proliferation and prevented the expansion of CD3+CD25+ and CD3+CD69+ T cells. In T cells stimulated by alloantigen, C75 also induced the downregulation of NF-kB gene expression and the upregulation of peroxisome proliferator-activated receptor gamma (PPARγ) gene involved in ubiquitination and degradation of NF-kB protein.When compared to other standard IS agents, such as anti-thymocyte globulin (ATG), Cyclosporine A, Rapamycin or inhibitor of FAO Etomoxir, C75 showed similar anti-T cell activity.The same dose of C75 (10 mkg/ml) did not cause apoptotic death of human CD34+ cells in vitro, nor affected CD34+ cell clonogenicity in vitro. In fact, C75 increased the number of BFU-E and CFU-GM colonies (P < 0.05). We observed that the expression of de novo DNA methyltrasferases DNMT3A and DNMT3B, which are important regulators of stem cell renewal, was strongly reduced in CD34+ cells co-cultured for 3 days with allogeneic T cells. On the contrary, in the presence of C75 the expression of DNMT3A and DNMT3B was not different from baseline control. To test the in-vivo effect of C75 we utilized a xenograft model of stem cell rejection where 2 x 105 human CD34+ cells and HLA incompatible T lymphocytes were injected in immunodeficient nonobese diabetic/ltsz-scid/scid - IL2 receptor gamma chain knockout (NSG) mice at 1:1 ratio. Four weeks after transplantation, control NSG mice showed complete rejection of huCD45+CD34+ cells and the expansion of T cells in the marrow and spleen. NSG mice treated with intra-peritoneum injections of C75 every 3 days for 2 weeks, instead, showed 10-15% human CD45+ myeloid cells in the marrow and spleen at week 4 after transplant, suggesting at least a partial effect on preventing rejection of incompatible stem cells.We showed here that moderate FAS inhibition may represent a novel immunosuppressive strategy and our findings will prompt preclinical investigations exploiting the effect of FAS inhibitors alone or in combination with standard IS agents in models of allogeneic transplantation or bone marrow failure. DisclosuresNo relevant conflicts of interest to declare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.