Abstract

Rotationally resolved spectra of the B(2)Π - X(2)Π 0(0)(0) electronic origin bands and 11(1)(1) μ(2)Σ-μ(2)Σ vibronic hot band transitions of both C(6)H and C(6)D have been recorded in direct absorption by cavity ring-down spectroscopy through a supersonically expanding planar plasma. For both origin and hot bands accurate spectroscopic parameters are derived from a precise rotational analysis. The origin band measurements extend earlier work and the 11(1)(1) μ(2)Σ-μ(2)Σ vibronic hot bands are discussed here for the first time. The Renner-Teller effect for the lowest bending mode ν(11) is analyzed, yielding the Renner parameters ε(11), vibrational frequencies ω(11), and the true spin-orbit coupling constants A(SO) for both (2)Π electronic states. From the Renner-Teller analysis and spectral intensity measurements as a function of plasma jet temperature, the excitation energy of the lowest-lying 11(1) μ(2)Σ vibronic state of C(6)H is determined to be (11.0 ± 0.8) cm(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.