Abstract

A systematic investigation, using density functional theory (DFT) methods, of the physical properties of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) pressure-induced polymerized C60 structures, was performed. The optimized crystal structures, the electronic density of states (DOS) and the bulk moduli B0 were calculated for such polymerized structures, showing how these properties change with the degree of polymerization and providing an overview of the properties of this class of materials. The increasing number of intermolecular bonds, across the low-dimensional polymers, induces a decrease of the electronic bandgap, which in turn vanishes for the metallic 3D polymers. The compressibility behavior of these materials also shows a monotonous dependence on the degree of polymerization: the rise in the number of polymeric bonds induces an expected increase of the bulk modulus. From semiconducting to metallic and from soft to low-compressibility, this class of materials is shown to display an enormous range of electronic and elastic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.