Abstract

We investigated phospholipid signal transduction, calcium flux, O2- anion production and actin polymerization after stimulation with the C fragment and chemoattractant, C5a, and then determined how C5a pretreatment affected subsequent responses to formyl peptide in human neutrophils. We have previously demonstrated that the novel lipids, phosphatidylinositol trisphosphate (PIP3) and phosphatidylinositol(3,4)P2 (PI(3,4)P2), rise transiently in neutrophils after activation with formyl peptide. Furthermore, the rise in PIP3 parallels actin polymerization. In this study, neutrophils activated with C5a exhibited two distinct G protein-dependent signal pathways involving different phosphoinositides: 1) [32P]PI(4,5)P2 hydrolysis and [32P]PA production, and 2) the transient formation of D-3-phosphorylated phosphoinositides, [32P]PIP3 and [32P]PI(3,4)P2. When neutrophils were preincubated with C5a for 5 min before stimulation with formyl peptide, [32P]PI(4,5)P2 hydrolysis was unchanged, and [32P]PA production and O2- formation were slightly enhanced compared with controls stimulated with formyl peptide in the absence of C5a. In contrast, [32P]PIP3 production, right angle light scatter, and actin polymerization were all reduced 35 to 40%. Therefore, these data support the hypothesis that PIP3 plays a role in chemotaxis but not superoxide formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.