Abstract

C(4) photosynthesis has a number of distinct properties that enable the capture of CO(2) and its concentration in the vicinity of Rubisco, so as to reduce the oxygenase activity of Rubisco, and hence the rate of photorespiration. The aim of this review is to discuss the properties of this CO(2)-concentrating mechanism, and thus to indicate the minimum requirements of any genetically-engineered system. In particular, the Kranz leaf anatomy of C(4) photosynthesis and the division of the C(4)-cycle between two cell types involves intercellular co-operation that requires modifications in regulation and transport to make C(4) photosynthesis work. Some examples of these modifications are discussed. Comparisons are made with the C(4)-type photosynthesis found in single-celled C(4)-type CO(2)-concentrating mechanisms, such as that found in the aquatic plant, Hydrilla verticillata and the single-celled C(4) system found in the terrestrial chenopod Borszczowia aralocaspica. The outcome of recent attempts to engineer C(4) enzymes into C(3) plants is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.