Abstract

Regioselective C-H functionalization of pyridines remains a persistent challenge due to their inherent electronically deficient properties. In this report, we present a strategy for the selective pyridine C3-H thiolation, selenylation, and fluorination under mild conditions via classic N-2,4-dinitrophenyl Zincke imine intermediates. Radical inhibition and trapping experiments, as well as DFT theoretical calculations, indicated that the thiolation and selenylation proceeds through a radical addition-elimination pathway, whereas fluorination via a two-electron electrophilic substitution pathway. The pre-installed electron-deficient activating N-DNP group plays a crucial and positive role, with the additional benefit of recyclability. The practicability of this protocol was demonstrated in the gram-scale synthesis and the late-stage modification of pharmaceutically relevant pyridines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.