Abstract

Palladium-catalyzed oxidation can single out the secondary hydroxyl group at C3 in glucose, circumventing the more readily accessible hydroxyl at C6 and the more reactive anomeric hydroxyl. Oxidation followed by reduction results in either allose or allitol, each a rare sugar that is important in biotechnology. Also, N-acetylglucosamine is selectively oxidized at C3. These results demonstrate that glucose and N-acetylglucosamine, the most readily available chiral building blocks, can be versatile substrates in homogeneous catalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call