Abstract
Abiotic stresses have already exhibited the negative effects on crop growth and development, thereby influencing crop quality and yield. Therefore, plants have developed regulatory mechanisms to adopt against such harsh changing environmental conditions. Recent studies have shown that zinc finger protein transcription factors play a crucial role in plant growth and development as well as in stress response. C2H2 zinc finger proteins are one of the best-studied types and have been shown to play diverse roles in the plant abiotic stress responses. However, the C2H2 zinc finger network in plants is complex and needs to be further studied in abiotic stress responses. Here in this review, we mainly focus on recent findings on the regulatory mechanisms, summarize the structural and functional characterization of C2H2 zinc finger proteins, and discuss the C2H2 zinc finger proteins involved in the different signal pathways in plant responses to abiotic stress.
Highlights
The C1-2i Q-type C2H2 zinc finger proteins subclass was the most extensively studied to be associated with abiotic stress responses in plants
Previous studies imply that different C2H2 zinc finger proteins display some similarities and distinctions in regulating abiotic stress tolerance in plants [2,5,22,25]
Most members of C2H2 zinc finger proteins involved in the abiotic stresses response, such as ZFP245, ZFP179, ZAT7, ZAT10, ZAT12 and AZF1/2/3, function as repressors through the EAR motif
Summary
Functions are, their structures are varied and divided into different classes according to the numbers and positions of the cysteine (Cys) and histidine (His) residues that bind the zinc ion [6]. Based on this canonical classification method of zinc finger proteins, the members of these classes include C2H2 (TFIIIA), C2HC (Retroviral nucleocapsid), C2HC5. (LIM domain), C2C2, C3HC4 (RING finger), C4 (GATA-1), C4HC3 (Requium), C6 (GAL4), and other classes [3,6,8,9] Among these subclasses, the C2H2 zinc finger proteins contain one of the best-characterized DNA-binding motifs, which are composed of two Cys and two His residues together with one zinc ion tetrahedrally [2,6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.