Abstract

The olefin separation from their mixture with paraffins by facilitated transport membranes is a very important process for the further macromolecular compounds production. Membranes loaded with silver ions, which are responsible for the facilitated olefin transport, are instable with time due to their reduction, while those containing protons catalyze the polymerization of olefins. In this work, membranes based on polyethylene with grafted sulfonated polystyrene in various ionic forms (H+, Li+, Na+) were used for the first time for the separation of the ethylene/ethane mixture. The influence of sulfonation time, relative humidity, and various ionic forms on ethylene separation was studied. The SEM study shows a non-uniform sulfur distribution over the membrane thickness for membranes sulfonated for different reaction times. With increasing sulfonation time and relative humidity the ethylene permeability and the factor of its separation with ethane increase. Separation factors for membranes in the Li+-form are shown to be as high as for membranes in the H+-form. A possible mechanism for the facilitated ethylene transport is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call