Abstract

C10H18N2Na2O10 (ethylenediaminetetra-acetic acid disodium salt) inhibition and adsorption mechanism on the corrosion of steel-reinforcement corrosion in concrete immersed in corrosive environments were investigated in this paper. For this, seven different concentrations ranging from 0% to 0.667% C10H18N2Na2O10 per weight of cement were admixed in steel-reinforced concretes immersed in saline and in acidic sulphate test-media and these were monitored using electrochemical techniques. Statistical analyses of the scatter of measured data from these, as per ASTM G16-95 R04, showed that C10H18N2Na2O10>0% admixtures portrayed excellent efficiency at inhibiting steel-reinforcement corrosion in the saline environment. However, attaining comparably high inhibition of steel-reinforcement corrosion in concrete immersed in the acidic sulphate environment exhibited greater dependency on high C10H18N2Na2O10 admixture concentration in the steel-reinforced concretes. Different models of adsorption isotherms bear indications of chemical adsorption, chemisorptions, as the prevalent adsorption mechanism of C10H18N2Na2O10 on steel-reinforcement in both of the corrosive environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call