Abstract

This study aimed to investigate the effects of C-type natriuretic peptide (CNP) on ventricular arrhythmias in rats with acute myocardial ischemia (AMI). Forty male Sprague-Dawley rats were randomly divided into sham group (n = 10), AMI group (n = 15) and AMI + CNP group (n = 15). AMI model was induced by ligating the left anterior descending branch of the coronary artery, and CNP was pumped through the femoral vein starting 30 min before ischemia and continuing until 1 h after AMI. The occurrence of ventricular arrhythmias after ischemia and heart rate variability (HRV) were recorded and analyzed. The plasma norepinephrine level was detected at 15 min after AMI. Ventricular electrophysiological parameters including ventricular effective refractory period (ERP), ERP dispersion, ventricular action potential duration (APD) alternans and ventricular fibrillation threshold (VFT) were measured one hour after AMI. Then, the expressions of cyclic guanosine monophosphate in myocardial tissue and left stellate ganglion were examined. Compared to sham group, AMI significantly shortened the ERP, augmented ERP dispersion, elevated APD alternans cycle length, reduced VFT, and increased the incidence of ventricular arrhythmias. Moreover, AMI increased the sympathetic component of HRV, raised plasma norepinephrine levels, and decreased the cyclic guanosine monophosphate levels in myocardium and left stellate ganglion. All those changes were attenuated by CNP treatment. These findings suggest that CNP protected against ventricular arrhythmias in rats with AMI, potentially by inhibiting ischemia-induced cardiac sympathetic hyperactivity and cardiac electrophysiology instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call