Abstract

Endothelial activation elicited by inflammatory agents is regarded as a key event in the pathogenesis of several vascular inflammatory diseases. In the present study, the inhibitory effects and underlying mechanism of C-type natriuretic peptide (CNP) on LPS-induced endothelial activation were examined in human umbilical vein endothelial cells (HUVECs). The effect of CNP on adhesion molecule expression was assessed using quantitative real-time RT-PCR and western blotting analyses. The nuclear factor-κB (NF-κB), MAPK, and PI3K/Akt signaling pathways in LPS-stimulated HUVECs were investigated using western blotting analyses, and the production of intracellular reactive oxygen species (ROS) was measured using a fluorescence method. Pretreatment with CNP inhibited LPS-induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and P-selectin in a concentration-dependent manner. CNP suppressed the phosphorylation of p65 and NF-κB activation in LPS-stimulated cells. Moreover, CNP reduced ERK1/2 and p38 phosphorylation induced by LPS but not JNK. Furthermore, CNP induced Akt phosphorylation and activation of hemeoxygenase-1 (HO-1) expression. CNP significantly inhibited the production of intracellular ROS. These results suggest that CNP effectively attenuated LPS-induced endothelial activation by inhibiting the NF-κB and p38 signaling pathways, eliminating LPS-induced intracellular ROS production, and activating the PI3K/Akt/HO-1 pathway in HUVECs; thereby, demonstrating that CNP may be a potential therapeutic target for the treatment of sepsis and inflammatory vascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.