Abstract
C-type lectins (CTLs), a superfamily of glycan-binding receptors, play a pivotal role in the host defense against pathogens and the maintenance of immune homeostasis of higher animals and humans. CTLs in innate immunity serve as pattern recognition receptors and often bind to glycan structures in damage- and pathogen-associated molecular patterns. While CTLs are found throughout the whole animal kingdom, their ligand specificities and downstream signaling have mainly been studied in humans and in model organisms such as mice. In this review, recent advancements in CTL research in veterinary species as well as potential applications of CTL targeting in veterinary medicine are outlined.
Highlights
Glycans belong to the most abundant macromolecules constituting all living organisms
C-type lectins (CTLs) associated with an immunoreceptor tyrosine-based activation motif (ITAM), such as the dendritic cell-associated lectin 1 (Dectin-1/Clec7a), and 2 (Dectin-2/Clec6a) and the macrophage-inducible Ca2+-dependent lectin (Mincle/Clec4e), signal upon ligand binding via phosphorylation of the spleen tyrosine kinase (Syk)
Along with other pattern recognition receptors (PRRs), CTLs are important constituents of the host–microbiome communication interface: symbiotic microbes interact with CTLs [129] and affect host cytokine production and CTL expression in trained innate immunity [130] and homeostasis [131] by epigenetic mechanisms
Summary
Glycans belong to the most abundant macromolecules constituting all living organisms. CTLs may contribute to protective immune responses against parasites as suggested by a positive correlation between macrophage mannose receptor 1 (MRC1/Clec13d) expression levels and the relative resistance of Atlantic [83] and pink salmon toward sea lice infestation [84]. These findings indicate that the selective breeding or genetic engineering introducing desirable CTL alleles into veterinary species might be a means to improve their performance and disease resistance in the future
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.