Abstract

We probed the relationship of NF axonal transport of neurofilaments (NFs) to their phosphorylation state by comparing these parameters in two closely-aged groups of young adult mice — 2 and 5 months of age. This particular time interval was selected since prior studies demonstrate that optic axons have already completed axonal caliber expansion and attained adult NF levels by 2 months but, as shown herein, continue to increase NF-H C-terminal phosphorylation. NF axonal transport was monitored by autoradiographic analysis of the distribution of radiolabeled subunits immunoprecipitated from optic axon segments at intervals following intravitreal injection of 35 S -methionine. Both the peak and front of radiolabeled NFs translocated faster in 2- vs. 5-month-old mice. This developmental decline in NF transport rate was not due to reduced incorporation of NFs into the cytoskeleton, nor to an overall decline in slow axonal transport. By excluding or minimizing other factors, these findings support previous conclusions that C-terminal NF phosphorylation regulates NF axonal transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.