Abstract

AbstractDue to its large bond energy, precisely controllable C–F bond activation is a significant challenge in organic synthesis. A single C(sp3)–F bond transformation of perfluoroalkyl groups is particularly desirable to supply functionalized perfluoroalkyl compounds offering properties that are potentially useful in pharmaceutical and materials chemistry. Recently, the single defluorinative transformation of perfluoroalkyl compounds has been developed via visible-light photocatalysis. Herein, we summarize this field via two main topics. Topic 1 covers the transformations of C(sp3)–F bonds in either perfluoroalkylarenes or perfluoroalkane carbonyl compounds via a defluorinative spin-center shift in the radical anion intermediates. Topic 2 addresses the defluorinative transformations of α-trifluoromethyl alkenes to give gem-difluoroalkenes via a radical/polar crossover process.1 Introduction2 C(sp3)–F Transformations via Defluorinative Spin-Center Shifts3 C(sp3)–F Transformations via a Radical/Polar Crossover Process4 Conclusions

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.