Abstract

The rotational spectrum of the phenyl isothiocyanate-CO2 complex was investigated by pulsed-jet Fourier transform microwave spectroscopy complemented by quantum chemical calculations. Only one isomer, with CO2 almost in the plane of phenyl isothiocyanate, has been detected in the pulsed jet, of which the spectrum displays a quadrupole coupling hyperfine structure due to the presence of a 14N nucleus (I = 1). This structure is nearly equal to the lowest energy geometry obtained by B3LYP-D3(BJ)/6-311++G(d,p), which has been dominated by a C···S tetrel bond (n → π* interaction) and one secondary C-H···O hydrogen bond (n → σ* interaction). Molecular electrostatic potential and natural bond orbital analysis were used to characterize the noncovalent interactions of the complex. The results from this study would lay the groundwork for the design and advancement of materials that exhibit high efficiency in capturing CO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.