Abstract
C-reactive protein (CRP) is an acute-phase protein that binds to components of damage tissue, activates C, and stimulates phagocytic cells. CRP binding to receptors on monocytic and polymorphonuclear phagocytes has been shown. Recently, CRP-binding proteins of 38 to 40 kDa and 57 to 60 kDa have been identified on the human promonocyte cell line U-937 and the mouse macrophage cell line PU5 1.8, respectively. However, analysis of CRP binding to these cells and to peripheral blood leukocytes suggests that additional CRP receptor sites may be present. Because many studies have shown interactions between CRP binding and IgG binding to leukocytes, we have examined further the CRP binding sites on U-937 cells and determined their relationship to the FcR for IgG (Fc gamma R) expressed on these cells. Our results demonstrate specific saturable binding of CRP to peripheral blood monocytes and U-937 cells, which is readily inhibited by aggregated IgG. Monomeric IgG, which binds specifically to Fc gamma RI, inhibited a maximum of 20% of CRP binding to these cells. mAb 197 and mAb IV.3, which block IgG binding to Fc gamma RI and Fc gamma RII, respectively, failed to inhibit CRP binding to U-937 cells. Two CRP-binding molecules were identified by precipitation of lysates from surface-labeled U-937 cells and cross-linking experiments. One of these had a molecular mass of 43 to 45 kDa, similar to the molecule previously described as the CRPR on U-937 cells. The other had the same mobility by SDS-PAGE as Fc gamma RI. The identity of this protein with Fc gamma RI was confirmed by the ability of both IgG-Sepharose and CRP-Sepharose to preclear the protein from cell lysates and by inhibition of binding to both IgG-Sepharose and CRP-Sepharose by anti-Fc gamma RI mAb 197.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.