Abstract

The standard infinite-volume definition of connected correlation function and particle mass in the 3-state Potts model can be implemented in Monte Carlo simulations by using C-periodic spatial boundary conditions. This avoids both the breaking of translation invariance (cold wall b.c.) and the phase-dependent and thus possibly biased evaluation of data (periodic b.c.). The numerical feasibility of the standard definitions is demonstrated by sample computations on a 24 × 24 × 48 lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.