Abstract

Increased levels of C-peptide, a cleavage product of proinsulin, circulate in patients with insulin resistance and early type 2 diabetes, a high-risk population for the development of a diffuse and extensive pattern of arteriosclerosis. This study tested the hypothesis that C-peptide might participate in atherogenesis in these patients. We demonstrate significantly higher intimal C-peptide deposition in thoracic aorta specimens from young diabetic subjects compared with matched nondiabetic controls as determined by immunohistochemical staining. C-peptide colocalized with monocytes/macrophages in the arterial intima of artery specimen from diabetic subjects. In vitro, C-peptide stimulated monocyte chemotaxis in a concentration-dependent manner with a maximal 2.3+/-0.4-fold increase at 1 nmol/L C-peptide. Pertussis toxin, wortmannin, and LY294002 inhibited C-peptide-induced monocyte chemotaxis, suggesting the involvement of pertussis toxin-sensitive G-proteins as well as a phosphoinositide 3-kinase (PI3K)-dependent mechanism. In addition, C-peptide treatment activated PI3K in human monocytes, as demonstrated by PI3K activity assays. C-peptide accumulated in the vessel wall in early atherogenesis in diabetic subjects and may promote monocyte migration into developing lesions. These data support the hypothesis that C-peptide may play an active role in atherogenesis in diabetic patients and suggest a new mechanism for accelerated arterial disease in diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.