Abstract

BackgroundAntimicrobial peptides are a promising alternative to conventional antibiotics. Plants are an important source of such peptides; their pharmacological properties are known since antiquity. Access to relevant information, however, is not straightforward, as there are practically no major repositories of experimentally validated and/or predicted plant antimicrobial peptides. PhytAMP is the only database dedicated to plant peptides with confirmed antimicrobial action, holding 273 entries. Data on such peptides can be otherwise retrieved from generic repositories.DescriptionWe present C-PAmP, a database of computationally predicted plant antimicrobial peptides. C-PAmP contains 15,174,905 peptides, 5–100 amino acids long, derived from 33,877 proteins of 2,112 plant species in UniProtKB/Swiss-Prot. Its web interface allows queries based on peptide/protein sequence, protein accession number and species. Users can view the corresponding predicted peptides along with their probability score, their classification according to the Collection of Anti-Microbial Peptides (CAMP), and their PhytAMP id where applicable. Moreover, users can visualise protein regions with a high concentration of predicted antimicrobial peptides. In order to identify potential antimicrobial peptides we used a classification algorithm, based on a modified version of the pseudo amino acid concept. The classifier tested all subsequences ranging from 5 to 100 amino acids of the plant proteins in UniProtKB/Swiss-Prot and stored those classified as antimicrobial with a high probability score (>90%). Its performance measures across a 10-fold cross-validation are more than satisfactory (accuracy: 0.91, sensitivity: 0.93, specificity: 0.90) and it succeeded in classifying 99.5% of the PhytAMP peptides correctly.ConclusionsWe have compiled a major repository of predicted plant antimicrobial peptides using a highly performing classification algorithm. Our repository is accessible from the web and supports multiple querying options to optimise data retrieval. We hope it will greatly benefit drug design research by significantly limiting the range of plant peptides to be experimentally tested for antimicrobial activity.

Highlights

  • Antimicrobial peptides are a promising alternative to conventional antibiotics

  • We have compiled a major repository of predicted plant antimicrobial peptides using a highly performing classification algorithm

  • Our repository is accessible from the web and supports multiple querying options to optimise data retrieval

Read more

Summary

Introduction

Antimicrobial peptides are a promising alternative to conventional antibiotics. Plants are an important source of such peptides; their pharmacological properties are known since antiquity. PhytAMP is the only database dedicated to plant peptides with confirmed antimicrobial action, holding 273 entries. Data on such peptides can be otherwise retrieved from generic repositories. C-PAmP contains 15,174,905 peptides, 5–100 amino acids long, derived from 33,877 proteins of 2,112 plant species in UniProtKB/Swiss-Prot. Antimicrobial peptides constitute a crucial part of plant defence against pathogens [1] Such peptides have been extracted from leaves, flowers, stems, seeds and roots and can be broadly grouped into three categories, namely thionins [2], defensins [3] and lipid transfer proteins [4]. Originally classified as a type of thionins, are abundant in basic residues They exhibit strong antifungal action, but their role in vivo is otherwise still poorly understood. The defensive properties of lipid transfer proteins have not been fully elucidated yet, but they have been observed to act against fungi and bacteria

Methods
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.