Abstract

An analytic model describing the distribution of the electron temperature created by absorption of an optical beam with a cylindrical symmetry in a layered structure was developed. Main attention was paid to the contribution of the lattice heating in the stationary and nonstationary regimes. It was shown that both the spatial distribution of the incident stationary beam and the temporal distribution of the incident pulses can be retrieved from the spatial and temporal electron temperature dependences near the illuminated surface. Electron temperature distributions can be measured using the thermoelectric effect. Experimental results of the spatial and temporal measurements of the thermoelectric voltage were compared with the theoretical calculations and a satisfactory agreement between experimental and theoretical results was found near the incident beam center for the quasistationary regime. The experimentally derived Seebeck detector’s responsivity equals 17.5μV∕Wcm−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.